Trends in System Safety: A European View?

John A McDermid

Department of Computer Science
University of York
Heslington, York, YO10 5DD, UK

John. McDer mi d@s. yor k. ac. uk

Abstract

This brief paper sets out some perceptions of trends in
regulatory policy, public perception of safety, systems
and software engineering which impact safety engineering
practises. The paper takes a European perspective, but is
largely a personal view. It should also be noted that many
of the change drivers are of international scope.

Keywords: Safety critical systems.

1 Introduction

Like many aspects of engineering, safety practises evolve
over time. In safety, the change drivers come from a
number of sources including:

e regulatory policy;
e public perception of risk;

e requirements for increased functionality and

sophistication of products;

e advances in technology for systems and software
engineering.

The latter two drivers are essentially global, but the first
two are more “localised” in their nature. This paper
discusses all the four areas, but emphasises those issues
of regulation and policy which (so far as the author is
aware) distinguish the trends in Europe from those
elsewhere in the world. All four change drivers pose
issues for safety engineering — in some cases there are
research challenges, and in other cases the difficulties
arise in changing working practises.

Having identified issues which pose challenges for safety
engineering, the paper then considers responses to the
challenges, focusing mainly on technical and research
issues. Also, some consideration is given to changes in
standards.

It is not practical, in such a short paper, to do full justice
to the subject. Also, it is unlikely that any individual will
be aware of all trends, in all industries. Thus what follows
should be viewed as personal perceptions of significant
changes in a number of industries and technologies, but

Copyright © 2002, Australian Computer Society, Inc. This
paper appeared at the 7th Australian Workshop on Safety
Critical Systems and Software (SCS'02), Adelaide. Conferences
in Research and Practice in Information Technology, Vol. 15. P.
Lindsay, Ed. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

with a bias towards the aerospace industry and software
technology.

2 Trends and Challenges

The following trends are those that have struck the author
as providing particular challenges to achieving or
assessing safety; there is no claim that the set of issues
identified is exhaustive.

2.1 Regulatory Changes

In some application sectors, e.g. Air Traffic Management
(ATM) and Railway Signalling, there is a trend to move
from “rule based” to “risk based” regulation. The details,
and the stage in the transition process, vary between
sectors, but there are some common factors:

e Requirements (rules) for specific equipments are
being eliminated or downgraded;

e Suppliers are required to manage the risks associated
with their system or service within an overall “target
level of safety”, apportioning safety budgets to sub-
systems as appropriate;

e Suppliers of systems (at all levels in the system
hierarchy) are required to demonstrate that they have
managed risks appropriately, typically through a
safety case;

e Regulation is carried out through review and
acceptance of safety cases, not checking
conformance to more prescriptive rules.

These trends pose a number of challenges:

A. 1t is often difficult to set and agree safety targets for
component systems, especially where the range of
accident scenarios to be considered is large;

B. It is difficult to produce a safety case for a low level
system, e.g. an ATM air-ground transceiver, as the
designer and/or operator of the system will not have
full knowledge of the operational environment for
the system;

C. It is hard to produce, or assess, a set of inter-related
safety cases intended to provide a coherent, overall,
argument for a set of interacting systems or services.

These challenges are exacerbated by the fact that the
regulatory changes represent a major cultural change for
the organisations involved.

2.2 Public Perception of Risk

It has long been understood that expert “computation” of
risk can be at variance with the public perception of risk.
In some senses this situation is not getting worse, but the
media attention to accidents, e.g. the recent railway
accidents in the UK, have heightened public awareness of
the issues. Unfortunately, various pronouncements, €.g.
politicians saying that “expense is no object where safety
is concerned”, following accidents tends to increase
awareness without increasing understanding.

In essence there is only one challenge:

D. To find more effective ways of communicating and
discussing risk with the public, especially in the
presence of factors, e.g. multiple fatalities, which
strongly influence perceptions of risk.

This may be an issue which is particularly significant in
the UK at present, but it is clearly an issue of broader
concern.

2.3 Application Requirements

There are many ways in which application, or system,
requirements are becoming more demanding. The list
below identifies some general trends which can be seen in
a number of sectors, e.g. aerospace, automotive and
defence. As the categories are quite general, some
examples are given, without being too specific about
system details:

e System complexity is rising exponentially in some
sectors. For example the current generation of
military aircraft have about 3-5MLoC of safety
critical code, but the next generation is likely to have
an order of magnitude more;

e Systems are becoming more highly integrated, e.g.
adaptive cruise control systems in cars may interface
with engine management, transmission (clutch and
gear change) and perhaps braking. To analyse the
cruise control system requires an understanding of all
these related systems, and changes in one of these
systems may impact the cruise control functionality;

e Systems are gaining higher authority, and in many
cases the user has no ability to intervene in particular
aspects of the system operation. Perhaps the most
extreme example is that of aerodynamically unstable
aircraft, e.g. EuroFighter, which simply cannot fly
without the computer systems;

e Systems are also being developed to have much
greater autonomy, i.e. the ability to operate without
any human intervention. The obvious example is
unmanned air vehicles which may deliver weapons
without a “man in the loop”;

e Finally there is a greater recognition of “systems of
systems”, that is interacting systems that were not,
and perhaps could not, be designed as a whole. Civil
airspace is an example of a system of systems so the
concept is not new — but the problem increases as the
sophistication and degree of interaction of each of
the systems increases.

Arguably these issues could all be viewed as posing
challenges in their own right. However they can be
grouped as follows to form three challenges:

E. Developing techniques for cost-effectively analysing
complex and highly integrated systems, in a modular
fashion which provides support for efficient analysis
of (incremental) change;

F. Developing methods for designing safe high
authority, autonomous systems and for analysing
their safety;

G. Developing methods for designing safe systems of
systems and for analysing their safety.

Arguably points F and G could be merged, but there
seems to be an intrinsic difference in the challenge posed
when dealing with systems of systems which are not the
responsibility of a single design authority.

2.4 Technology Changes

There are many technological changes which affect safety
critical systems. The list below identifies just four such
changes, focusing on computer hardware and software:

e The rate of change of commercial processor design is
enormous. More significantly, the design of modern
processors (caches, pipelines, predictive execution)
make it very difficult to predict worst case execution
time and show that systems meet their deadlines;

e There is a growing trend to use distributed systems,
e.g. the so-called integrated modular avionics/
systems (IMA/IMS) in aerospace, in safety related
applications. Classical methods of safety analysis and
software verification are hard to apply to such
systems, and tend to conflict with one of the aims of
using such technologies — ease of change and
incremental certification;

e There is considerable pressure to use mainstream
software development techniques, due to availability
of tools and trained staff. At the forefront of this
trend is object oriented (OO) technologies and
methods such as UML. The issue here is that safety
analysis and, to a lesser extent, verification
techniques are of limited applicability to OO designs;

e There is increasing use of automatic code generation,
and techniques such as systematic reuse. Safety
analysis and verification techniques typically assume
more classical development processes and, for
example, it is unclear how to reuse verification
evidence for a software component when it is reused.

There are several ways of addressing the above issues, so
there are more than four challenges, e.g. H & I can be
viewed as alternatives, or as being complementary:

H. Find stochastic means to analyse timing behaviour of
modern processors, placing bounds or distributions
on execution times. Develop associated scheduling
theory to allow for occasional time “over-runs”.

I. Encourage a bifurcation of the processing industry,
separating the “main stream” processors from those

intended for critical applications — whilst still
achieving growth in processing capability;

J. Develop new safety analysis techniques to support
development of IMA/IMS, and change certification
practises to allow for incremental certification;

K. Develop hazard and safety analysis techniques for
OO development methods such as UML. More
significantly, “restrictions” need to be placed on
methods such as UML to make it suitable for use in
such applications — e.g. to avoid unbounded response
times caused by dynamic object creation;

L. Define design restrictions and verification techniques
for OO programming languages, e.g. C++, so they
can be analysed and tested effectively;

M. Develop strategies for cost-effectively assessing
automatically generated code. In particular, there is a
need to deal with small changes at a cost proportional
to the scale of the change — and this may require
alterations in the approach to code generation as well
as verification;

N. Develop approaches to “modularising” and reuse of
safety analyses to support design and code reuse.

In addition, there is a need to support the transition
between “historic” and new processes. However this is so
dependent on organisation, culture, etc. that we do not
pose it as a separate (technical) challenge.

2.5 Other Observations

There are always concerns about the costs and timescales
of developing and assessing safety critical systems and
software, and about the difficulties of managing change.
These are not mentioned as specific trends or challenges
as they have been a concern for some time — however
they form part of the “backdrop” to many of the trends
and challenges outlined above. Indeed one facet of this is
the growing pressure in many industries to use
Commercial Off the Shelf (COTS) products. However,
much has been written about this subject, and it seems
more profitable to focus on other issues.

In the above there has been no attempt to draw out
systematic distinctions between the European and US
approaches. There are many areas of similarity, especially
in technology — for example projects in Europe and in the
USA, e.g. JSF, are already committed to using C++,
despite the limited knowledge of how to certify code
produced in the language.

However there are differences in culture, especially an
apparently greater willingness in the USA to take on new
technology — and perhaps an excessive reluctance of
Europeans to grapple with the issues posed by new
technologies, and just to say “they should not be used”.

3 Responses to the Challenges

There is a range of activities in research institutions, in
industrial projects, and in standards development which
are addressing the above challenges. Space does not
permit an exhaustive analysis of these activities, instead

the opportunity is taken to highlight what the author
perceives as key issues. Inevitably there is a bias in such
perceptions — hence the statement above that these are
personal views.

3.1 General Principles

Rather than try to consider each of the challenges
individually it is possible to identify some approaches
which give a way of addressing several of the challenges
at once. We can view these approaches as being general
principles. We consider two such approaches, or general
principles.

First, it is desirable to design and analyse systems in such
a way that we can achieve compositionality — that is to
combine components, or analysis results, so that we can
derive properties of the composed system from those of
its parts. For some properties, e.g. mass, compositionality
normally holds, but it is far from clear how to achieve it
for safety. System architecture is a key element, but it is
hard to discuss architecture in general so we focus on
three aspects of development and assessment:

1. There is current work considering how to achieve
modularity in safety cases (Kelly 2000). The aim is
to allow parts of a large safety case to be developed
separately, then combined, by defining “interfaces”
between the separate elements. Thus, for example, it
would be possible to tell if a low-level safety case
satisfies the requirements of a higher level one, and
to assess the impact of change.

2. The OO community has pioneered the ideas of
contracts (Meyer 1997), although the principles go
back to work by CIliff Jones (Jones 1981). The key
aim of this work is to identify what a component
guarantees at one side of an interface, and thus what
may be relied on, or assumed, at the other. Software
can be composed so long as the guarantees are strong
enough to meet the assumptions (rely conditions).
Work is being undertaken to extend these ideas to
IMA, with the complication that it is necessary to
deal with failure conditions (Conmy 2001).

3. The idea of contracts is quite general, and some
elements of this approach can be seen in the safety
case work referenced above (Kelly 2000). There is
potential value in extending these ideas to safety
analyses. Further, where software is reused and
defined in patterns (Gamma 1995) there may be
value in linking the associated safety/verification
evidence in such a way that it can be composed when
the components are composed. This seems to be a
natural extension of the contract-based approach to
achieving compositionality — but so far as the author
is aware, not one which is being followed.

This addresses, to some degree, challenges C, E, F, G, J
and N. In another paper at this conference John Rushby
(Rushby 2002) discusses an approach to compositional
verification, which illustrates some of the above issues,
and also highlights the second principle — automation and
formality.

The complexity of modern systems means that it is
increasingly difficult to analyse them manually — but the
majority of fault trees, FMEAs, and other safety analyses
are still constructed by hand. To cope with increasing
complexity automation is needed — and, where software is
concerned, formal techniques are necessary to provide the
basis for automation:

e Work has been done on automating safety analysis
for specific technologies, e.g. valves and pumps, for
some years. As systems engineers move to the use of
modelling tools there is value in deriving safety
analyses from these models, both to reduce cost and
to help ensure that the models and analyses stay in
step. Whilst there have been some promising steps
forward in this area (Papadopoulos 2000) much more
needs to be done, e.g. in dealing with common cause
failures, failure recovery, etc. This is an important
issue which requires more attention.

e One of the key aspects of the safety process is to
identify hazards. With software, a key issue is to
identify contributory causes to system level hazards.
Typically this is not done to any level of detail, and
industrial practice is to determine the SIL level for
software. However there is some progress on
adapting HAZOP principles (Kletz 1992) to OO
designs (Hawkins 2002), expressed in UML
(Rumbaugh 1999). UML models, e.g. state charts,
are “formal enough” that it is possible to automate
the generation of deviations. This work is in its
formative stages, but it seems to offer the potential of
deriving (formal) safety requirements for software.

e There is also an issue of automated verification.
There are effective program analysis tools, such as
the SPARK Examiner (Barnes 1997) which enable
effective software verification. However the sort of
safety properties which arise out of the OO analysis
tend to be trace-based, not classical pre- and post-
conditions. Thus there is a mismatch between the
requirements for formal analysis and the available
technology. This is an area where Hoare and He’s
pioneering work on unified models of programming
(He 1998) and practical realisations such as Circus
(Woodcock 2002) may be relevant. There seems to
be an opportunity for some interesting, focused,
research in this area.

These approaches address some of the core “software
safety” challenges, i.e. J, K and, to some extent, M.

There is little value in proposing extensions to UML if
they are not accepted by the community, and by the tool
vendors. Encouragingly, the Object Management Group
(OMG) which is responsible for overseeing the evolution
of UML (and related activities) has a group working on
safety — and it is hoped that this will give a way of
bringing the ideas outlined above into widespread use.

Also, although automation is essential, it has drawbacks —
some of these are considered by Galloway (2002).

3.2 Specific Initiatives

There are other research activities addressing some of
these challenges, e.g.:

e Authority and autonomy — work in the recently
launched Defence and Aerospace Research
Partnership in High Integrity Real-Time Systems
(HIRTS DARP) is considering both how to design
and to assess safety of such systems.

e Analysis of OO programming languages — work has
been undertaking adapting classical program analysis
techniques, e.g. program slicing, to analysis of C++
(Whitford 2002). Whilst this work is encouraging,
much more needs to be done to provide effective
methods and tools.

e There is considerable work on program timing
analysis, including studies of stochastic approaches
to worst case execution time (Edgar 2001).

This work addresses, in part, challenges F, H, L and M.

3.3 Standards

There are many system and software safety standards
(Hermann 1999) however there has been much debate
about the value of these standards. In some sectors there
are now active programmes to update or replace
standards. Some of the changes which, in part, reflect the
above challenges include:

e There is a general move towards objective-based
standards which require system developers or
operators to analyse for hazards, set safety targets,
then provide evidence that these targets have been
met. This trend is apparent in the UK Defence sector,
and is likely to be reflected in a new issue of DS 00-
56. In some cases, e.g. ATM, the regulatory process
is also evolving accordingly.

e System safety standards, e.g. ARP 4754 (SAE 1996)
are being reviewed and revised. This standard is
intended to deal with complex and highly integrated
systems - but it is hard to see this in the standard, as
currently written. It is to be hoped that issues of
compositionality will be addressed in the update to
the standard.

e There is an emerging activity to update DO178B
(RTCA 1992) to produce DO178C. A driving force
behind this is to deal with the issues of OO systems —
but hopefully the revision will also incorporate some
of the excellent guidance which has already been
published to supplement DO178B.

Nothing has been said here about IEC61508 (IEC 1999).
So far as the author is aware, after more than a decade in
gestation, there is little enthusiasm for an update to
IEC61508. However much of what is in IEC61508 seems
dated. The control/protection system distinction which is
firmly embedded in the standard does not even deal with
many current systems, let alone systems of systems.
Similarly, the recommended techniques for development
of software seem outdated — it is thus hard to see how the
standard will remain relevant, unless it is updated.

3.4 Residual Issues

The discussion above has said nothing directly about
challenges A, B, and D. This is not to say that they are
not important, but they require different approaches. They
are largely organisational, managerial and cultural issues
— and organisational change, education and training is
needed to address these challenges.

Also, challenge I is a commercial issue — and not one
which can be influenced, to a significant degree, by
research. However it is perhaps worth noting that there
are perhaps 10 times more embedded processors than
PCs, so the commercial opportunity is significant.

Also, space has not admitted a full discussion of
challenge M, analysing auto-generated code. There is a
considerable amount of work in this area, perhaps some
of the most interesting being that undertaken by QinetiQ
on analysing the software in EuroFighter (details are not
in the public domain, but some of the technical aspects of
the approach are (Arthan 2000).

4 Conclusions

The system and software safety community face a
number of challenges due to cultural and technical
changes. There is no pretence that this paper has
addressed all the issues — but it is hoped that it has set out
some of the more pertinent ones. (However one serious
omission was the issue of analysing complex data used in
safety critical systems.)

An underlying problem for the safety community is that it
is always having to “play catch up” as development
technology evolves. Whilst it might be argued that this is
undesirable, it is unrealistic to expect otherwise. Perhaps
the best way to address this is to try to achieve influence
with the technology developers, e.g. by participating in
bodies such as OMG, and helping to evolve standards.

The paper has tried to indicate relevant research, focusing
on European work more than that in the USA. There are
some promising lines of exploration, and the possibility
that the general principles, e.g. of compositionality, will
prove of long-lasting value to the community. Also, there
are other promising developments, e.g. the increase in
power of model checkers which enables much larger
problems to be tackled formally.

There is considerable opportunity and scope for research
— but a concern at the difficulty of getting such work
recognised and funded. It is relatively easy to “sell”
technological research, by comparison with investigating
ways of constraining new technologies! It seems that this
is likely to be a long-lasting challenge for the safety
community — and perhaps one that transcends national
and continental boundaries.

5 References

ARTHAN R, CASELEY P, O'HALLORAN C, SMITH
A (2000), ClawZ: Control Laws in Z, in Proc. of
ICFEM 2000, IEEE Computer Society Press.

BARNES, J. (1997), High Integrity Ada: The SPARK
Approach, Addison Wesley,.

CONMY P.M., McDERMID J.A. (2001), High level
failure analysis for Integrated Modular Avionics, in
Proceedings of Australian Workshop on Safety
Critical Systems, LINDSAY P.A. (Ed.).

EDGAR S., BURNS A. (2001), Statistical Analysis of
WCET for Scheduling, Proceedings of the IEEE
Real-Time Systems Symposium.

GALLOWAY, AJ., McDERMID J.A.,, MURDOCH
J.M., PUMFREY D.J., Automation of System Safety
Analysis: Possibilities and Pitfalls, in Proc. of ISSC
2002, System Safety Society, Denver.

GAMMA E., HELM R., Johnson R., VLISSIDES 1J.
(1995) Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley.

HIRTS DARP, www.cs.york.ac.uk/hise/darp/.

HAWKINS R, MCDERMID J.A. (2002), Performing
Hazard and Safety Analysis of Object oriented
Systems, in Proc. of ISSC 2002, System Safety
Society, Denver.

HERMANN D.S. (1999): Software Safety
Reliability, IEEE Computer Society Press.

HE J., HOARE, C.A.R. (1998), Unified Theories of
Programming, Prentice Hall.

IEC (1999), IEC 61508: Functional Safety of Electrical
/Electronic/Programmable Electronic Systems.

JONES C.B. (1981), Development Methods for
Computer Programs including a Notion of
Interference, DPhil Thesis, University of Oxford.

KELLY T P 2001, Concepts and Principles of
Compositional Safety Cases, COMSA/2001/1/1,
available at http://www-users.cs.york.ac.uk/~tpk/

KLETZ T. (1992), HAZOP and HAZAN: Identifying and
Assessing Process Industry Hazards, Institution of
Chemical Engineers.

MEYER B.M. (1997), Object-Oriented Software
Construction, Second Edition, Prentice Hall.

PAPADOPOULOS Y., McDERMID J.A., SASSE R.,
HEINER G. (2000), Analysis and Synthesis of the
Behaviour of Complex Programmable Electronic
Systems in Conditions of Failure, Reliability
Engineering and System Safety.

RTCA (1992), Software Considerations In Airborne
Systems and Equipment Certification DO-178B/ED-
12B

and

RUMBAUGH J., JACOBSON 1., BOOCH G. (1999),
The Unified Modelling Language Reference Manual,
Addison Wesley.

RUSHBY J.M. (2002), Trends in System Safety — US
View.
http://www.itee.uq.edu.au/~pal/ACS/SCS02/Rushby
Talk.pdf

SAE (1996), Aerospace Recommended Practice (ARP)
4754: Certification Considerations for Highly-
Integrated or Complex Aircraft Systems

WHITFORD S. (2002) Software Safety Code Analysis of
an Embedded C++ Application, in Proc. of ISSC
2002, System Safety Society, Denver.

WOODCOCK J.C.P.,, CAVALCANTI, A.J. (2002), The
Semantics of Circus. In Didier Ber, Jonathan P.
Bowen, Martin C. Henson and Ken Robinson,
editors, ZB 2002: Formal Specification and
Development in Z and B, LNCS, 2272:184-203.
Springer-Verlag.

